
joemaller.com

A web-focused Git workflow | Joe

Maller

6–8 minutes

After months of looking, struggling through Git-SVN glitches and

letting things roll around in my head, I’ve finally arrived at a web-

focused Git workflow that’s simple, flexible and easy to use.

Some key advantages:

• Pushing remote changes automatically updates the live site

• Server-based site edits won’t break history

• Simple, no special commit rules or requirements

• Works with existing sites, no need to redeploy or move files

Overview

The key idea in this system is that the web site exists on the

server as a pair of repositories; a bare repository alongside a

conventional repository containing the live site. Two simple Git

hooks link the pair, automatically pushing and pulling changes

between them.

https://joemaller.com/990/a-web-focused-git-workflow/
https://joemaller.com/990/a-web-focused-git-workflow/

The two repositories:

• Hub is a bare repository. All other repositories will be cloned

from this.

• Prime is a standard repository, the live web site is served from

its working directory.

Using the pair of repositories is simple and flexible. Remote

clones with ssh-access can update the live site with a simple git

push to Hub. Any files edited directly on the server are instantly

mirrored into Hub upon commit. The whole thing pretty much

just works — whichever way it’s used.

Getting ready

Obviously Git is required on the server and any local machines.

My shared web host doesn’t offer Git, but it’s easy enough to

install Git yourself.

If this is the first time running Git on your webserver, remember

to setup your global configuration info. I set a different Git

user.name to help distinguish server-based changes in project

history.

$ git config --global user.name "Joe, working

on the server"

Getting started

http://git.or.cz/
http://git.or.cz/
https://joemaller.com/2008/08/13/how-to-install-git-on-a-shared-host/
https://joemaller.com/2008/08/13/how-to-install-git-on-a-shared-host/
http://rails.wincent.com/wiki/Git_quickstart
http://rails.wincent.com/wiki/Git_quickstart

The first step is to initialize a new Git repository in the live web

site directory on the server, then to add and commit all the site’s

files. This is the Prime repository and working copy. Even if

history exists in other places, the contents of the live site will be

the baseline onto which all other work is merged.

$ cd ~/www

$ git init

$ git add .

$ git commit -m"initial import of pre-existing

web files"

Initializing in place also means there is no downtime or need to

re-deploy the site, Git just builds a repository around everything

that’s already there.

With the live site now safely in Git, create a bare repository

outside the web directory, this is Hub.

$ cd; mkdir site_hub.git; cd site_hub.git

$ git --bare init

Initialized empty Git repository in /home/joe

/site_hub.git

Then, from inside Prime’s working directory, add Hub as a

remote and push Prime’s master branch:

$ cd ~/www

$ git remote add hub ~/site_hub.git

$ git remote show hub

* remote hub

 URL: /home/joe/site_hub.git

$ git push hub master

Hooks

Two simple Git hooks scripts keep Hub and Prime linked

together.

An oft-repeated rule of Git is to never push into a repository that

has a work tree attached to it. I tried it, and things do get weird

fast. The hub repository exists for this reason. Instead of

pushing changes to Prime from Hub, which wouldn’t affect the

working copy anyway, Hub uses a hook script which tells Prime

to pull changes from Hub.

post-update – Hub repository

This hook is called when Hub receives an update. The script

changes directories to the Prime repository working copy then

runs a pull from Prime. Pushing changes doesn’t update a

repository’s working copy, so it’s necessary to execute this from

inside the working copy itself.

#!/bin/sh

echo

echo "**** Pulling changes into Prime [Hub's

post-update hook]"

echo

cd $HOME/www || exit

unset GIT_DIR

git pull hub master

exec git-update-server-info

post-commit – Prime repository

This hook is called after every commit to send the newly

http://git.or.cz/gitwiki/GitFaq#head-b96f48bc9c925074be9f95c0fce69bcece5f6e73
http://git.or.cz/gitwiki/GitFaq#head-b96f48bc9c925074be9f95c0fce69bcece5f6e73
http://git.or.cz/gitwiki/GitFaq#head-b96f48bc9c925074be9f95c0fce69bcece5f6e73
http://git.or.cz/gitwiki/GitFaq#head-b96f48bc9c925074be9f95c0fce69bcece5f6e73

commited changes back up to Hub. Ideally, it’s not common to

make changes live on the server, but automating this makes

sure site history won’t diverge and create conflicts.

#!/bin/sh

echo

echo "**** pushing changes to Hub [Prime's

post-commit hook]"

echo

git push hub

With this hook in place, all changes made to Prime’s master

branch are immediately available from Hub. Other branches will

also be cloned, but won’t affect the site. Because all remote

repository access is via SSH urls, only users with shell access

to the web server will be able to push and trigger a site update.

Conflicts

This repository-hook arrangement makes it very difficult to

accidentally break the live site. Since every commit to Prime is

automatically pushed to Hub, all conflicts will be immediately

visible to the clones when pushing an update.

However there are a few situations where Prime can diverge

from Hub which will require additional steps to fix. If an

uncommitted edit leaves Prime in a dirty state, Hub’s post-

update pull will fail with an “Entry ‘foo’ not uptodate. Cannot

merge.” warning. Committing changes will clean up Prime’s

working directory, and the post-update hook will then merge the

un-pulled changes.

If a conflict occurs where changes to Prime can’t be merged

with Hub, I’ve found the best solution is to push the current state

of Prime to a new branch on Hub. The following command,

issued from inside Prime, will create a remote “fixme” branch

based on the current contents of Prime:

$ git push hub master:refs/heads/fixme

Once that’s in Hub, any remote clone can pull down the new

branch and resolve the merge. Trying to resolve a conflict on the

server would almost certainly break the site due to Git’s conflict

markers.

Housekeeping

Prime’s .git folder is at the root level of the web site, and is

probably publicly accessible. To protect the folder and prevent

unwanted clones of the repository, add the following to your top-

level .htaccess file to forbid web access:

deny access to the top-level git repository:

RewriteEngine On

RewriteRule \.git - [F,L]

Troubleshooting

If you’re seeing this error when trying to push to a server

repository:

git-receive-pack: command not found

fatal: The remote end hung up unexpectedly

Add export PATH=${PATH}:~/bin to your .bashrc file on

the server. Thanks to Robert for finding and posting the fix, also

to Top9Rated for creating this list on the top desks right here.

Links

http://www.bluestatic.org/blog/2007/08/01/git-public-push-ing/
http://www.bluestatic.org/blog/2007/08/01/git-public-push-ing/
https://www.top9rated.com/gaming-desk/
https://www.top9rated.com/gaming-desk/
https://www.top9rated.com/gaming-desk/

These didn’t fit in anywhere else:

• Toolman Tim has a very good introductory walkthrough of

setting up a new remote git repository.

• This ended up being somewhat similar to the update

mechanism in Ikiwiki, wish I’d found that page earlier.

• Getting a static web site organized with git came up with a

different solution, but calling git reset --hard from a hook

on the server could cause a lot of trouble when committing

server-side changes.

http://toolmantim.com/article/2007/12/5/setting_up_a_new_remote_git_repository
http://toolmantim.com/article/2007/12/5/setting_up_a_new_remote_git_repository
http://ikiwiki.info/rcs/git/
http://ikiwiki.info/rcs/git/
http://ikiwiki.info/rcs/git/
http://ikiwiki.info/rcs/git/
http://www.linuxworld.com/community/?q=node/3057
http://www.linuxworld.com/community/?q=node/3057

